Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
NPJ Vaccines ; 9(1): 53, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448450

RESUMEN

Vaccines based on mRNA technology have revolutionized the field. In fact, lipid nanoparticles (LNP) formulated with mRNA are the preferential vaccine platform used in the fight against SARS-CoV-2 infection, with wider application against other diseases. The high demand and property right protection of the most potent cationic/ionizable lipids used for LNP formulation of COVID-19 mRNA vaccines have promoted the design of alternative nanocarriers for nucleic acid delivery. In this study we have evaluated the immunogenicity and efficacy of different rationally designed lipid and polymeric-based nanoparticle prototypes against SARS-CoV-2 infection. An mRNA coding for a trimeric soluble form of the receptor binding domain (RBD) of the spike (S) protein from SARS-CoV-2 was encapsulated using different components to form nanoemulsions (NE), nanocapsules (NC) and lipid nanoparticles (LNP). The toxicity and biological activity of these prototypes were evaluated in cultured cells after transfection and in mice following homologous prime/boost immunization. Our findings reveal good levels of RBD protein expression with most of the formulations. In C57BL/6 mice immunized intramuscularly with two doses of formulated RBD-mRNA, the modified lipid nanoparticle (mLNP) and the classical lipid nanoparticle (LNP-1) were the most effective delivery nanocarriers at inducing binding and neutralizing antibodies against SARS-CoV-2. Both prototypes fully protected susceptible K18-hACE2 transgenic mice from morbidity and mortality following a SARS-CoV-2 challenge. These results highlight that modulation of mRNAs immunogenicity can be achieved by using alternative nanocarriers and support further assessment of mLNP and LNP-1 prototypes as delivery vehicles for mRNA vaccines.

2.
Vaccines (Basel) ; 12(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38400136

RESUMEN

The Interferon Stimulated Gene 15 (ISG15), a unique Ubiquitin-like (Ubl) modifier exclusive to vertebrates, plays a crucial role in the immune system. Primarily induced by interferon (IFN) type I, ISG15 functions through diverse mechanisms: (i) covalent protein modification (ISGylation); (ii) non-covalent intracellular action; and (iii) exerting extracellular cytokine activity. These various roles highlight its versatility in influencing numerous cellular pathways, encompassing DNA damage response, autophagy, antiviral response, and cancer-related processes, among others. The well-established antiviral effects of ISGylation contrast with its intriguing dual role in cancer, exhibiting both suppressive and promoting effects depending on the tumour type. The multifaceted functions of ISG15 extend beyond intracellular processes to extracellular cytokine signalling, influencing immune response, chemotaxis, and anti-tumour effects. Moreover, ISG15 emerges as a promising adjuvant in vaccine development, enhancing immune responses against viral antigens and demonstrating efficacy in cancer models. As a therapeutic target in cancer treatment, ISG15 exhibits a double-edged nature, promoting or suppressing oncogenesis depending on the tumour context. This review aims to contribute to future studies exploring the role of ISG15 in immune modulation and cancer therapy, potentially paving the way for the development of novel therapeutic interventions, vaccine development, and precision medicine.

3.
Front Immunol ; 14: 1270908, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38045703

RESUMEN

Introduction: The generation of an HIV-1 vaccine able to induce long-lasting protective immunity remains a main challenge. Here, we aimed to modify next-generation soluble, prefusion-stabilized, close-to-native, glycan-engineered clade C gp140 envelope (Env) trimers (sC23v4 KIKO and ConCv5 KIKO) for optimal display on the cell surface following homologous or heterologous vector delivery. Methods: A combination of the following modifications scored best regarding the preservation of closed, native-like Env trimer conformation and antigenicity when using a panel of selected broadly neutralizing (bnAb) and non-neutralizing (nnAb) monoclonal antibodies for flow cytometry: i) replacing the natural cleavage site with a native flexible linker and introducing a single amino acid substitution to prevent CD4 binding (*), ii) fusing a heterologous VSV-G-derived transmembrane moiety to the gp140 C-terminus, and iii) deleting six residues proximal to the membrane. Results: When delivering membrane-tethered sC23v4 KIKO* and ConCv5 KIKO* via DNA, VSV-GP, and NYVAC vectors, the two native-like Env trimers provide differential antigenicity profiles. Whereas such patterns were largely consistent among the different vectors for either Env trimer, the membrane-tethered ConCv5 KIKO* trimer adopted a more closed and native-like structure than sC23v4 KIKO*. In immunized mice, VSV-GP and NYVAC vectors expressing the membrane-tethered ConCv5 KIKO* administered in prime/boost combination were the most effective regimens for the priming of Env-specific CD4 T cells among all tested combinations. The subsequent booster administration of trimeric ConCv5 KIKO* Env protein preserved the T cell activation levels between groups. The evaluation of the HIV-1-specific humoral responses induced in the different immunization groups after protein boosts showed that the various prime/boost protocols elicited broad and potent antibody responses, preferentially of a Th1-associated IgG2a subclass, and that the obtained antibody levels remained high at the memory phase. Discussion: In summary, we provide a feasible strategy to display multiple copies of native-like Env trimers on the cell surface, which translates into efficient priming of sustained CD4+ T cell responses after vector delivery as well as broad, potent, and sustained antibody responses following booster immunizations with the homologous, prefusion-stabilized, close-to-native ConCv5 KIKO* gp140 Env trimer.


Asunto(s)
Vacunas contra el SIDA , Seropositividad para VIH , VIH-1 , Animales , Ratones , Anticuerpos Anti-VIH , VIH-1/genética , Proteínas de la Membrana , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética , Anticuerpos Neutralizantes , Vacunas contra el SIDA/genética , Inmunidad
4.
Front Immunol ; 14: 1160065, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37404819

RESUMEN

Introduction: While there has been considerable progress in the development of vaccines against SARS-CoV-2, largely based on the S (spike) protein of the virus, less progress has been made with vaccines delivering different viral antigens with cross-reactive potential. Methods: In an effort to develop an immunogen with the capacity to induce broad antigen presentation, we have designed a multi-patch synthetic candidate containing dominant and persistent B cell epitopes from conserved regions of SARS-CoV-2 structural proteins associated with long-term immunity, termed CoV2-BMEP. Here we describe the characterization, immunogenicity and efficacy of CoV2-BMEP using two delivery platforms: nucleic acid DNA and attenuated modified vaccinia virus Ankara (MVA). Results: In cultured cells, both vectors produced a main protein of about 37 kDa as well as heterogeneous proteins with size ranging between 25-37 kDa. In C57BL/6 mice, both homologous and heterologous prime/boost combination of vectors induced the activation of SARS-CoV-2-specific CD4 and CD8 T cell responses, with a more balanced CD8+ T cell response detected in lungs. The homologous MVA/MVA immunization regimen elicited the highest specific CD8+ T cell responses in spleen and detectable binding antibodies (bAbs) to S and N antigens of SARS-CoV-2. In SARS-CoV-2 susceptible k18-hACE2 Tg mice, two doses of MVA-CoV2-BMEP elicited S- and N-specific bAbs as well as cross-neutralizing antibodies against different variants of concern (VoC). After SARS-CoV-2 challenge, all animals in the control unvaccinated group succumbed to the infection while vaccinated animals with high titers of neutralizing antibodies were fully protected against mortality, correlating with a reduction of virus infection in the lungs and inhibition of the cytokine storm. Discussion: These findings revealed a novel immunogen with the capacity to control SARS-CoV-2 infection, using a broader antigen presentation mechanism than the approved vaccines based solely on the S antigen.


Asunto(s)
COVID-19 , Vacunas Virales , Humanos , Animales , Ratones , Vacunas contra la COVID-19 , Vectores Genéticos , SARS-CoV-2 , COVID-19/prevención & control , Ratones Endogámicos C57BL , Virus Vaccinia/genética
5.
J Mol Biol ; 435(15): 168173, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37301278

RESUMEN

Although one member of the poxvirus family, variola virus, has caused one of the most devastating human infections worldwide, smallpox, the knowledge gained over the last 30 years on the molecular, virological and immunological mechanisms of these viruses has allowed the use of members of this family as vectors for the generation of recombinant vaccines against numerous pathogens. In this review, we cover different aspects of the history and biology of poxviruses with emphasis on their application as vaccines, from first- to fourth-generation, against smallpox, monkeypox, emerging viral diseases highlighted by the World Health Organization (COVID-19, Crimean-Congo haemorrhagic fever, Ebola and Marburg virus diseases, Lassa fever, Middle East respiratory syndrome and severe acute respiratory syndrome, Nipah and other henipaviral diseases, Rift Valley fever and Zika), as well as against one of the most concerning prevalent virus, the Human Immunodeficiency Virus, the causative agent of Acquired Immunodeficiency Syndrome. We discuss the implications in human health of the 2022 monkeypox epidemic affecting many countries, and the rapid prophylactic and therapeutic measures adopted to control virus dissemination within the human population. We also describe the preclinical and clinical evaluation of the Modified Vaccinia virus Ankara and New York vaccinia virus poxviral strains expressing heterologous antigens from the viral diseases listed above. Finally, we report different approaches to improve the immunogenicity and efficacy of poxvirus-based vaccine candidates, such as deletion of immunomodulatory genes, insertion of host-range genes and enhanced transcription of foreign genes through modified viral promoters. Some future prospects are also highlighted.


Asunto(s)
Enfermedades Transmisibles Emergentes , Poxviridae , Vacunas Virales , Virosis , Animales , Humanos , Enfermedades Transmisibles Emergentes/prevención & control , Enfermedades Transmisibles Emergentes/virología , COVID-19/prevención & control , Vectores Genéticos , Mpox/prevención & control , Poxviridae/inmunología , Viruela/prevención & control , Vacunas Atenuadas , Virus Vaccinia/genética , Vacunas Virales/genética , Vacunas Virales/inmunología , Virosis/prevención & control , Virosis/virología , Virus Zika , Infección por el Virus Zika
6.
Front Cell Infect Microbiol ; 13: 1187193, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37313341

RESUMEN

The human immunodeficiency virus (HIV), responsible of the Acquired Immune Deficiency Syndrome (AIDS), continues to be a major global public health issue with any cure or vaccine available. The Interferon-stimulated gene 15 (ISG15) encodes a ubiquitin-like protein that is induced by interferons and plays a critical role in the immune response. ISG15 is a modifier protein that covalently binds to its targets via a reversible bond, a process known as ISGylation, which is the best-characterized activity of this protein to date. However, ISG15 can also interact with intracellular proteins via non-covalent binding or act as a cytokine in the extracellular space after secretion. In previous studies we proved the adjuvant effect of ISG15 when delivered by a DNA-vector in heterologous prime-boost combination with a Modified Vaccinia virus Ankara (MVA)-based recombinant virus expressing HIV-1 antigens Env/Gag-Pol-Nef (MVA-B). Here we extended these results evaluating the adjuvant effect of ISG15 when expressed by an MVA vector. For this, we generated and characterized two novel MVA recombinants expressing different forms of ISG15, the wild-type ISG15GG (able to perform ISGylation) or the mutated ISG15AA (unable to perform ISGylation). In mice immunized with the heterologous DNA prime/MVA boost regimen, the expression of the mutant ISG15AA from MVA-Δ3-ISG15AA vector in combination with MVA-B induced an increase in the magnitude and quality of HIV-1-specific CD8 T cells as well as in the levels of IFN-I released, providing a better immunostimulatory activity than the wild-type ISG15GG. Our results confirm the importance of ISG15 as an immune adjuvant in the vaccine field and highlights its role as a potential relevant component in HIV-1 immunization protocols.


Asunto(s)
VIH-1 , Interferón Tipo I , Humanos , Animales , Ratones , VIH-1/genética , Virus Vaccinia/genética , Adyuvantes Inmunológicos , Linfocitos T CD8-positivos , Inmunidad , Ubiquitinas/genética , Citocinas
7.
Vaccines (Basel) ; 11(2)2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36851164

RESUMEN

The development of new strategies to achieve a functional cure for HIV remains a priority. We tested a novel HIV therapeutic vaccine using unmodified mRNA (TMEP-B) and mRNA modified by 1-methyl-3'-pseudouridylyl (TMEP-Bmod) expressing both a multiepitopic sequences from Gag, Pol, and Nef proteins, including different CD4 and CD8 T-cell epitopes functionally associated with HIV control in transfected monocyte-derived dendritic cells (MDDCs) obtained from HIV infected patients. In vitro assays were used to test the mRNAs alone and in combination with immunomodulator agents, such as the TLR-7 agonist Vesatolimod and the PD-1 antagonist Nivolumab to try to improve HIV-specific cellular immune responses. Combining the mRNAs with the immunomodulators enhanced HIV-specific T-cell responses, together with the secretion of IFNγ, IP10, MIP-1α, and MIP-1ß, which are fundamental mediators of viral control. Our data suggest that the mRNA vaccine prototypes TMEP-B and TMEP-Bmod, when combined with Vesatolimod and/or Nivolumab, could achieve functional cure for patients with HIV.

8.
Vaccines (Basel) ; 12(1)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38250827

RESUMEN

The COVID-19 pandemic has brought significant changes and advances in the field of vaccination, including the implementation and widespread use of encapsidated mRNA vaccines in general healthcare practice. Here, we present two new mRNAs expressing antigenic parts of the SARS-CoV-2 spike protein and provide data supporting their functionality. The first mRNA, called RBD-mRNA, encodes a trimeric form of the virus spike protein receptor binding domain (RBD). The other mRNA, termed T-mRNA, codes for the relevant HLA I and II spike epitopes. The two mRNAs (COVARNA mRNAs) were designed to be used for delivery to cells in combination, with the RBD-mRNA being the primary source of antigen and the T-mRNA working as an enhancer of immunogenicity by supporting CD4 and CD8 T-cell activation. This innovative approach substantially differs from other available mRNA vaccines, which are largely directed to antibody production by the entire spike protein. In this study, we first show that both mRNAs are functionally transfected into human antigen-presenting cells (APCs). We obtained peripheral blood mononuclear cell (PBMC) samples from three groups of voluntary donors differing in their immunity against SARS-CoV-2: non-infected (naïve), infected-recovered (convalescent), and vaccinated. Using an established method of co-culturing autologous human dendritic cells (hDCs) with T-cells, we detected proliferation and cytokine secretion, thus demonstrating the ability of the COVARNA mRNAs to activate T-cells in an antigen-specific way. Interestingly, important differences in the intensity of the response between the infected-recovered (convalescent) and vaccinated donors were observed, with the levels of T-cell proliferation and cytokine secretion (IFNγ, IL-2R, and IL-13) being higher in the vaccinated group. In summary, our data support the further study of these mRNAs as a combined approach for future use as a vaccine.

9.
Vaccines (Basel) ; 9(9)2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34579196

RESUMEN

Development of a vaccine against HIV remains a major target goal in the field. The recent success of mRNA vaccines against the coronavirus SARS-CoV-2 is pointing out a new era of vaccine designs against pathogens. Here, we have generated two types of mRNA vaccine candidates against HIV-1; one based on unmodified vectors and the other on 1-methyl-3'-pseudouridylyl modified vectors expressing a T cell multiepitopic construct including protective conserved epitopes from HIV-1 Gag, Pol and Nef proteins (referred to as RNA-TMEP and RNA-TMEPmod, respectively) and defined their biological and immunological properties in cultured cells and in mice. In cultured cells, both mRNA vectors expressed the corresponding protein, with higher levels observed in the unmodified mRNA, leading to activated macrophages with differential induction of innate immune molecules. In mice, intranodal administration of the mRNAs induced the activation of specific T cell (CD4 and CD8) responses, and the levels were markedly enhanced after a booster immunization with the poxvirus vector MVA-TMEP expressing the same antigen. This immune activation was maintained even three months later. These findings revealed a potent combined immunization regimen able to enhance the HIV-1-specific immune responses induced by an mRNA vaccine that might be applicable to human vaccination programs with mRNA and MVA vectors.

10.
Vaccines (Basel) ; 9(3)2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33799505

RESUMEN

The emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants in different continents is causing a major concern in human global health. These variants have in common a higher transmissibility, becoming dominant within populations in a short time, and an accumulation of a high number of mutations in the spike (S) protein, especially within the amino terminal domain (NTD) and the receptor binding domain (RBD). These mutations have direct implications on virus infection rates through higher affinity of S RBD for the cellular angiotensin-converting enzyme-2 (ACE-2) receptor. There are also signs of enhanced virulence, re-infection frequency, and increased resistance to the action of monoclonal and polyclonal antibodies from convalescence sera and in vaccinated individuals in regions where the variants spread dominantly. In this review, we describe the different SARS-CoV-2 variants that have thus far been identified in various parts of the world with mutational changes and biological properties as well as their impact in medical countermeasures and human health.

11.
J Virol ; 95(2)2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33115866

RESUMEN

Induction of the endogenous innate immune system by interferon (IFN) triggers the expression of many proteins that serve like alarm bells in the body, activating an immune response. After a viral infection, one of the genes activated by IFN induction is the IFN-stimulated gene 15 (ISG15), which encodes a ubiquitin-like protein that undergoes a reversible posttranslational modification (ISGylation). ISG15 protein can also act unconjugated, intracellularly and secreted, acting as a cytokine. Although ISG15 has an essential role in host defense responses to microbial infection, its role as an immunomodulator in the vaccine field remains to be defined. In this investigation, we showed that ISG15 exerts an immunomodulatory role in human immunodeficiency virus (HIV) vaccines. In mice, after priming with a DNA-ISG15 vector mixed with a DNA expressing HIV-1 gp120 (DNA-gp120), followed by a booster with a modified vaccinia virus Ankara (MVA) vector expressing HIV-1 antigens, both wild-type ISG15-conjugated (ISG15-wt) and mutant unconjugated (ISG15-mut) proteins act as immune adjuvants by increasing the magnitude and quality of HIV-1-specific CD8 T cells, with ISG15-wt providing better immunostimulatory activity than ISG15-mut. The HIV-1 Env-specific CD8 T cell responses showed a predominant T effector memory (TEM) phenotype in all groups. Moreover, the amount of DNA-gp120 used to immunize mice could be reduced 5-fold after mixing with DNA-ISG15 without affecting the potency and the quality of the HIV-1 Env-specific immune responses. Our study clearly highlights the potential use of the IFN-induced ISG15 protein as immune adjuvant to enhance immune responses to HIV antigens, suggesting that this molecule might be exploitable for prophylactic and therapeutic vaccine approaches against pathogens.IMPORTANCE Our study described the potential role of ISG15 as an immunomodulatory molecule in the optimization of HIV/AIDS vaccine candidates. Using a DNA prime-MVA boost immunization protocol, our results indicated an increase in the potency and the quality of the HIV-1 Env-specific CD8 T cell response. These results highlight the adjuvant potency of ISG15 to elicit improved viral antigen presentation to the immune system, resulting in an enhanced HIV-1 vaccine immune response. The DNA-ISG15 vector could find applicability in the vaccine field in combination with other nucleic acid-based vector vaccines.


Asunto(s)
Vacunas contra el SIDA/inmunología , Adyuvantes Inmunológicos , Linfocitos T CD8-positivos/inmunología , Citocinas/inmunología , Proteína gp120 de Envoltorio del VIH/inmunología , VIH-1/inmunología , Inmunización/métodos , Vacunas contra el SIDA/administración & dosificación , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes Inmunológicos/genética , Animales , Citocinas/administración & dosificación , Citocinas/genética , Femenino , Células HEK293 , Anticuerpos Anti-VIH/inmunología , Proteína gp120 de Envoltorio del VIH/administración & dosificación , Proteína gp120 de Envoltorio del VIH/genética , Humanos , Inmunización Secundaria , Memoria Inmunológica , Inmunomodulación , Ratones , Ratones Endogámicos BALB C , Mutación , Ubiquitinas/administración & dosificación , Ubiquitinas/genética , Ubiquitinas/inmunología , Potencia de la Vacuna , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/inmunología , Virus Vaccinia/genética
12.
Vaccines (Basel) ; 7(3)2019 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-31261918

RESUMEN

A human immunodeficiency virus (HIV)/acquired immune deficiency syndrome (AIDS) vaccine able to induce long-lasting immunity remains a major challenge. We previously designed a T cell multiepitopic immunogen including protective conserved epitopes from HIV-1 Gag, Pol and Nef proteins (TMEP-B), that induced potent HIV-1-specific CD8 T cells when vectored by DNA and combined with the vaccine candidate modified vaccinia virus Ankara (MVA)-B. Here, we described the vectorization of TMEP-B in MVA (MVA-TMEP) and evaluated the T cell immunogenicity profile elicited in mice when administered in homologous (MVA/MVA) or heterologous (DNA/MVA) prime/boost vector regimens or using homologous or heterologous inserts. The heterologous vector regimen was superior to the homologous protocol in inducing T cell responses. DNA-TMEP-primed animals boosted with MVA-TMEP or MVA-B exhibited the highest magnitudes of HIV-1-specific CD8, CD4 and T follicular helper (Tfh) cells, with MVA-TMEP significantly expanding Gag-specific CD8 T cell responses. In the homologous vector regimen, all groups exhibited similar HIV-1-specific CD8 and CD4 T cell responses, but both MVA-B/MVA-B and MVA-TMEP/MVA-TMEP combinations elicited higher Gag-Pol-Nef (GPN)-specific CD8 T cell responses compared to MVA-TMEP/MVA-B. Our results revealed an enhanced induction of HIV-1-specific T cell responses by TMEP-B when vectored in both DNA and MVA, and supported their use in combined prime/boost strategies for HIV-1 prevention and/or therapy.

13.
Methods Mol Biol ; 2023: 269-285, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31240684

RESUMEN

Bioluminescence imaging, with luciferase as a reporter-encoding gene, has been successfully and widely used for studies to follow viral infection in an organism and to measure therapeutic efficacy of antiviral agents in small animal models. Bioluminescence is produced by the reaction of a luciferase enzyme stably inserted into the viral genome with a defined substrate systemically delivered into the animal. The light emitted is captured allowing the detection of viral infection sites and the quantification of viral replication in the context of tissues of a living animal. The goal of this chapter is to provide a technical background for the evaluation of poxvirus infection in cells and animals through bioluminescence imaging technology using luciferase-expressing recombinant poxviruses.


Asunto(s)
Mediciones Luminiscentes/métodos , Poxviridae/efectos de los fármacos , Animales , Antivirales/farmacología , Humanos , Poxviridae/genética , Virosis/prevención & control
14.
Viruses ; 11(2)2019 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-30781504

RESUMEN

The development of an effective Human Immunodeficiency Virus (HIV) vaccine that is able to stimulate both the humoral and cellular HIV-1-specific immune responses remains a major priority challenge. In this study, we described the generation and preclinical evaluation of single and double modified vaccinia virus Ankara (MVA)-based candidates expressing the HIV-1 clade C membrane-bound gp145(ZM96) trimeric protein and/or the Gag(ZM96)-Pol-Nef(CN54) (GPN) polyprotein that was processed to form Gag-induced virus-like particles (VLPs). In vitro characterization of MVA recombinants revealed the stable integration of HIV-1 genes without affecting its replication capacity. In cells that were infected with Env-expressing viruses, the gp145 protein was inserted into the plasma membrane exposing critical epitopes that were recognized by broadly neutralizing antibodies (bNAbs), whereas Gag-induced VLPs were released from cells that were infected with GPN-expressing viruses. VLP particles as well as purified MVA virions contain Env and Gag visualized by immunoelectron microscopy and western-blot of fractions that were obtained after detergent treatments of purified virus particles. In BALB/c mice, homologous MVA-gp145-GPN prime/boost regimen induced broad and polyfunctional Env- and Gag-specific CD4 T cells and antigen-specific T follicular helper (Tfh) and Germinal Center (GC) B cells, which correlated with robust HIV-1-specific humoral responses. Overall, these results support the consideration of MVA-gp145-GPN vector as a potential vaccine candidate against HIV-1.


Asunto(s)
Vacunas contra el SIDA/inmunología , Anticuerpos Anti-VIH/inmunología , Linfocitos T/inmunología , Vacunas de Partículas Similares a Virus/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Femenino , Infecciones por VIH/inmunología , Infecciones por VIH/prevención & control , VIH-1 , Inmunidad Celular , Inmunidad Humoral , Inmunogenicidad Vacunal , Ratones Endogámicos BALB C , Vacunas de ADN/inmunología , Virus Vaccinia , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética
15.
Front Immunol ; 10: 2941, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31921191

RESUMEN

The generation of a vaccine against HIV-1 able to induce durable protective immunity continues a major challenge. The modest efficacy (31.2%) of the phase III RV144 clinical trial provided the first demonstration that a prophylactic HIV/AIDS vaccine is achievable but emphasized the need for further refinements of vaccine candidates, formulations, and immunization regimens. Here, we analyzed in mice the immunogenicity profile elicited by different homologous and heterologous prime/boost combinations using the modified rhabdovirus VSV-GP combined with DNA or poxviral NYVAC vectors, all expressing trimeric membrane-bound Env (gp145) of HIV-1 96ZM651 clade C, with or without purified gp140 protein component. In cultured cells infected with recombinant VSV-GP or NYVAC viruses, gp145 epitopes at the plasma membrane were recognized by human HIV-1 broadly neutralizing antibodies (bNAbs). In immunized mice, the heterologous combination of VSV-GP and NYVAC recombinant vectors improved the induction of HIV-1 Env-specific humoral and cellular immune responses compared to homologous prime/boost protocols. Specifically, the combination of VSV-GP in the prime and NYVAC in the boost induced higher HIV-1 Env-specific T cell (CD4/CD8 T cells and T follicular helper -Tfh- cells) immune responses compared to the use of DNA or NYVAC vectors in the prime and VSV-GP in the boost. Such enhanced T cell responses correlated with an enhancement of the Env-specific germinal center (GC) B cell population and with a heavily biased Env-specific response toward the Th1-associated IgG2a and IgG3 subclasses, while the other groups showed a Th2-associated IgG1 bias. In summary, our T and B cell population data demonstrated that VSV-GP-based vectors could be taken into consideration as an optimized immunogenic HIV-1 vaccine candidate component against HIV-1 when used for priming in heterologous combinations with the poxvirus vector NYVAC as a boost.


Asunto(s)
Vacunas contra el SIDA , Linfocitos B/inmunología , Vectores Genéticos , VIH-1 , Poxviridae , Multimerización de Proteína , Rhabdoviridae , Linfocitos T/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana , Vacunas contra el SIDA/genética , Vacunas contra el SIDA/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Embrión de Pollo , Chlorocebus aethiops , Femenino , Anticuerpos Anti-VIH/inmunología , VIH-1/genética , VIH-1/inmunología , Células HeLa , Humanos , Ratones , Ratones Endogámicos BALB C , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología
16.
Viruses ; 10(8)2018 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-30104537

RESUMEN

An effective vaccine against Human Immunodeficiency Virus (HIV) still remains the best solution to provide a sustainable control and/or eradication of the virus. We have previously generated the HIV-1 vaccine modified vaccinia virus Ankara (MVA)-B, which exhibited good immunogenicity profile in phase I prophylactic and therapeutic clinical trials, but was unable to prevent viral rebound after antiretroviral (ART) removal. To potentiate the immunogenicity of MVA-B, here we described the design and immune responses elicited in mice by a new T cell multi-epitopic B (TMEP-B) immunogen, vectored by DNA, when administered in homologous or heterologous prime/boost regimens in combination with MVA-B. The TMEP-B protein contained conserved regions from Gag, Pol, and Nef proteins including multiple CD4 and CD8 T cell epitopes functionally associated with HIV control. Heterologous DNA-TMEP/MVA-B regimen induced higher HIV-1-specific CD8 T cell responses with broader epitope recognition and higher polyfunctional profile than the homologous DNA-TMEP/DNA-TMEP or the heterologous DNA-GPN/MVA-B combinations. Moreover, higher HIV-1-specific CD4 and Tfh immune responses were also detected using this regimen. After MVA-B boost, the magnitude of the anti-VACV CD8 T cell response was significantly compromised in DNA-TMEP-primed animals. Our results revealed the immunological potential of DNA-TMEP prime/MVA-B boost regimen and supported the application of these combined vectors in HIV-1 prevention and/or therapy.


Asunto(s)
Vacunas contra el SIDA/inmunología , Linfocitos T CD8-positivos/inmunología , Epítopos de Linfocito T/inmunología , Infecciones por VIH/inmunología , Inmunogenicidad Vacunal , Vacunas contra el SIDA/administración & dosificación , Animales , Femenino , Vectores Genéticos , Antígenos VIH/inmunología , Infecciones por VIH/prevención & control , VIH-1 , Inmunización Secundaria , Ratones , Ratones Endogámicos BALB C , Vacunas de ADN/inmunología , Virus Vaccinia
18.
Viruses ; 10(1)2017 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-29280955

RESUMEN

An HIV-1 vaccine continues to be a major target to halt the AIDS pandemic. The limited efficacy of the RV144 phase III clinical trial with the canarypox virus-based vector ALVAC and a gp120 protein component led to the conclusion that improved immune responses to HIV antigens are needed for a more effective vaccine. In non-human primates, the New York vaccinia virus (NYVAC) poxvirus vector has a broader immunogenicity profile than ALVAC and has been tested in clinical trials. We therefore analysed the HIV immune advantage of NYVAC after removing viral genes that act on several signalling pathways (Toll-like receptors-TLR-interferon, cytokines/chemokines), as well as genes of unknown immune function. We generated a series of NYVAC deletion mutants and studied immune behaviour (T and B cell) to HIV antigens and to the NYVAC vector in mice. Our results showed that combined deletion of selected vaccinia virus (VACV) genes is a valuable strategy for improving the immunogenicity of NYVAC-based vaccine candidates. These immune responses were differentially modulated, positive or negative, depending on the combination of gene deletions. The deletions also led to enhanced antigen- or vector-specific cellular and humoral responses. These findings will facilitate the development of optimal NYVAC-based vaccines for HIV and other diseases.


Asunto(s)
Vacunas contra el SIDA/genética , Vacunas contra el SIDA/inmunología , VIH-1/genética , Transducción de Señal/inmunología , Virus Vaccinia/genética , Proteínas Virales/genética , Animales , Células Cultivadas , Embrión de Pollo , Citocinas/antagonistas & inhibidores , Citocinas/metabolismo , Femenino , Vectores Genéticos/genética , Anticuerpos Anti-VIH/sangre , Antígenos VIH/inmunología , Proteína gp120 de Envoltorio del VIH/inmunología , Infecciones por VIH/inmunología , Infecciones por VIH/prevención & control , VIH-1/inmunología , Ratones , Ratones Endogámicos BALB C , Eliminación de Secuencia , Receptores Toll-Like/antagonistas & inhibidores , Receptores Toll-Like/metabolismo
19.
PLoS One ; 12(10): e0186602, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29065142

RESUMEN

BACKGROUND: We have previously shown that an HIV vaccine regimen including three doses of HIV-modified vaccinia virus Ankara vector expressing HIV-1 antigens from clade B (MVA-B) was safe and elicited moderate and durable (1 year) T-cell and antibody responses in 75% and 95% of HIV-negative volunteers (n = 24), respectively (RISVAC02 study). Here, we describe the long-term durability of vaccine-induced responses and the safety and immunogenicity of an additional MVA-B boost. METHODS: 13 volunteers from the RISVAC02 trial were recruited to receive a fourth dose of MVA-B 4 years after the last immunization. End-points were safety, cellular and humoral immune responses to HIV-1 and vector antigens assessed by ELISPOT, intracellular cytokine staining (ICS) and ELISA performed before and 2, 4 and 12 weeks after receiving the boost. RESULTS: Volunteers reported 64 adverse events (AEs), although none was a vaccine-related serious AE. After 4 years from the 1st dose of the vaccine, only 2 volunteers maintained low HIV-specific T-cell responses. After the late MVA-B boost, a modest increase in IFN-γ T-cell responses, mainly directed against Env, was detected by ELISPOT in 5/13 (38%) volunteers. ICS confirmed similar results with 45% of volunteers showing that CD4+ T-cell responses were mainly directed against Env, whereas CD8+ T cell-responses were similarly distributed against Env, Gag and GPN. In terms of antibody responses, 23.1% of the vaccinees had detectable Env-specific binding antibodies 4 years after the last MVA-B immunization with a mean titer of 96.5. The late MVA-B boost significantly improved both the response rate (92.3%) and the magnitude of the systemic binding antibodies to gp120 (mean titer of 11460). HIV-1 neutralizing antibodies were also enhanced and detected in 77% of volunteers. Moreover, MVA vector-specific T cell and antibody responses were boosted in 80% and 100% of volunteers respectively. CONCLUSIONS: One boost of MVA-B four years after receiving 3 doses of the same vaccine was safe, induced moderate increases in HIV-specific T cell responses in 38% of volunteers but significantly boosted the binding and neutralizing antibody responses to HIV-1 and to the MVA vector. TRIAL REGISTRATION: ClinicalTrials.gov NCT01923610.


Asunto(s)
Vacunas contra el SIDA/inmunología , VIH-1/inmunología , Inmunización Secundaria , Vacunas contra el SIDA/efectos adversos , Anticuerpos Neutralizantes/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Anticuerpos Anti-VIH/sangre , Voluntarios Sanos , Humanos , Placebos
20.
PLoS One ; 10(11): e0141456, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26544853

RESUMEN

TRIAL DESIGN: Previous studies suggested that poxvirus-based vaccines might be instrumental in the therapeutic HIV field. A phase I clinical trial was conducted in HIV-1-infected patients on highly active antiretroviral therapy (HAART), with CD4 T cell counts above 450 cells/mm3 and undetectable viremia. Thirty participants were randomized (2:1) to receive either 3 intramuscular injections of MVA-B vaccine (coding for clade B HIV-1 Env, Gag, Pol and Nef antigens) or placebo, followed by interruption of HAART. METHODS: The magnitude, breadth, quality and phenotype of the HIV-1-specific T cell response were assayed by intracellular cytokine staining (ICS) in 22 volunteers pre- and post-vaccination. RESULTS: MVA-B vaccine induced newly detected HIV-1-specific CD4 T cell responses and expanded pre-existing responses (mostly against Gag, Pol and Nef antigens) that were high in magnitude, broadly directed and showed an enhanced polyfunctionality with a T effector memory (TEM) phenotype, while maintaining the magnitude and quality of the pre-existing HIV-1-specific CD8 T cell responses. In addition, vaccination also triggered preferential CD8+ T cell polyfunctional responses to the MVA vector antigens that increase in magnitude after two and three booster doses. CONCLUSION: MVA-B vaccination represents a feasible strategy to improve T cell responses in individuals with pre-existing HIV-1-specific immunity. TRIAL REGISTRATION: ClinicalTrials.gov NCT01571466.


Asunto(s)
Vacunas contra el SIDA , Terapia Antirretroviral Altamente Activa , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Infecciones por VIH/tratamiento farmacológico , VIH-1/fisiología , Linfocitos T CD8-positivos/efectos de los fármacos , Infecciones por VIH/inmunología , Infecciones por VIH/prevención & control , VIH-1/efectos de los fármacos , VIH-1/inmunología , Humanos , Memoria Inmunológica/efectos de los fármacos , Fenotipo , Vacunación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...